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Setup Issues

Setting up the CFD simulation concerns several issues:

WIND Input Data File
Time and Space Marching
Flux Formulation
Boundary Condition Inputs
Flowfield Initialization
Damping Initial Transients
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WIND: Input Data File

Input data file (.dat) is ASCII file.
File contains descriptive keywords

Online documentation lists all
keywords.

'\

“I" indicates a comment line

\

Freestream keyword sets reference
conditions, which are input in units
consistent with grid file.

J

Specifies additional information fo
the outflow boundary condition.

O\

Specifies use of limiter for chan
in solution (dq) over an iteration.

Specifies use of implicit boundar
conditions on the airfoil surface.

Specifies the number of iterations per cycle
and print frequency to list output file.

Example Input Data (*.dat) file:

RAE 2822 Airfoil. 2D Transonic Flow.
Mach = 0.729. Alpha = 2.31 deg.
Single zone C-grid 369 x 65.

» dg limiter on

— [Freestream  Mach p(psi) T(R) AOA Beta
_» freestream static 0.729 15.8 460.0 2.31 0.0

~ downstream pressure freestream zone 1

turbulence model spalart allmaras,_| Specifies choice of

First 3 lines are
for titles.

/

turbulence model.

~ implicit boundary on

Specifies the number
of cycles to run.

cycles 200 /

~ iterations per cycle 10 print frequency 10

cfl 5.0 «—

Specifies the CFL number.

end

3
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Basics of Time-Marching Methods

The finite-volume formulation yielded the ordinatiferential equation
do -
_Q =R
dt
This equation is non-linear in that

Q(F,t) and IQ(@ F,t)

The variablé is time and indicates that the soluti@n may be time-varying
(unsteady). The time variable gives the equatiorathematicallynyperbolic
character. That is, the solution is dependanhersolutions at previous times.
We can use this trait to developie-marching numerical methods in which we
start with an initial solution (guess) and marc@ éguations in time while
applying boundary conditions. The time-varyingusioin will evolve or the
solution will asymptotically approach the steadstestsolution.
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Methods for Steady Problems

If we assume the solution is steady, and so, tenm®t a variable, then the
equation takes the form

RQ,7)=0
we have at least a few other options for numenesthods:

Iterative Methods These methods assume the equation is mathaihatic
elliptic and start with an initial solution andnéte to converge to a solution.

Direct Methods These methods also assume the equation is@llpit solve
the system of equations in a single process.

Space-Marching MethodsThese methods assume that equation can bescast a
mathematically parabolic equation in one of therdowte directions and
marched along that coordinate. (i.e. Supersoawdlinx-direction).
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Time Discretization

We will first consider time-marching numerical metls. We first need to
consider dinitetime step &

5tn — tn+1 _tn
wheren is the index for time. The indicates a finite step (not differential).

A couple of concepts:

1. The marching of the equation over a time stepoca&nr over one or more
stages and one or morgerations.

2. The marching can be doaglicitly or implicitly. Anexplicit method uses
known information to march the solution. Anplicit method uses known
and unknown information and requires solving allegatem of equations.
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To demonstrate these concepts, consider the E@traaks, both explicit and
implict. The methods argngle-stagandfirst-order accurate time. The
the left-hand side of the equation is discretized as

Q" _ A

Jtn
where 5@n — ©n+1 _Qn
and so, Q™ =Q"+ "R

But how to discretize? in in time?

Explicit. Q™ =Q" +Jt"R" implicit: Q™ = Q" + J"R™!

( Unstable!)
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Linearization of R™*

The Euler Implicit Method introduced an implicight-hand-side term. This
term is approximated using a local linearizationhaf form

ﬁnﬂ: ﬁn-l'(al?j 5('jn+o(5t2)

The flux Jacobian can be defined as

such that théuler implicit methoccan be expressed as

53" =t R +A" Q")
or
1= otA]'a0n =R

wherel is the identity matrix.
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Trapezoidal (mid-point) differencing f@econd-ordeaccuracy in time:

dQ_1/(dQ)",(aQ]"
dt 2|| dt dt

20 Uy

Make substitution of equation,

Use linearization to form

[| —%&A} 50" = Gt"R"
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Three-Point Backward Time Difference

Three-point backward differencing feecond-ordeaccuracy in time:

dé N 3©n+1 _4©n _I_én—l
dt 20t

This results in the form

2 _ 1" A 1 A 2 .
| -ZO0tA| JO"==00" +ZA"R"
[ 3 } Q 3Q 3

10
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MacCormack Method

An example of anulti-stage explicit method is thé/lacCormack Method

Stage 1: QY =" + &A"R"

Stage 2: Q(Z) — Q(l) + "RY
At — (A0 L Q@

and then Q =2 Q"+Q

11
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Runge-Kutta Method

Another example of enulti-stage explicit method is théRunge-Kutta Method
The four stage method has the form:

Stage 1 QY =Q"+q,a"R"
Stage 2: Q® =Q"+a,t"RY
Stage 3: 6(3) :(A?n T4, &"R®
Stage 4: QW =Q"+a, &"R®
and then Q" =Q®W

Typical coefficients are: a, = 1/4, a,=1/3, a; = 1/2, a, =1.

12
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Time Step Size Control

The size of the time steft used in the time-marching methods requires
several considerations:

Resolution of time variation (time scale of a dyparticle).
Stability of the numerical method.
CFL stability condition:

<Vl

A

v, Courant-Friedrichs-Lewy (CFL) number (expliciethods generally
requirev < 1, but implicit methods allow larger numbers).

Ax, Resolution of the finite-volume cell.
A, Eigenvalues (wave speeds).

13
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Time Steps, Iterations, and Cycles

The numerical method marches the solution owenastep ot. Aniteration
IS the numerical process of taking a single tinep stAcycle is one or more
iterations.

Numerical errors exist in most methods that mayrestilt in a second-order
solution in time over one iteration. Multiptab-iterations of the numerical
method may be needed to remove these errors.

One such method for performing these sub-iterati®tizeNewton lterative
Method

14
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Newton lterative Method

Consider the “standard” Newton iterative methodfiioding a rootf(x) = 0,

1 1 —
= £m 4 £ (X - x™)= 0
which can be re-written as

fm
Xm+1:Xm_ = fmdxm:_fm

m X
fX

wherem s the iteration index. Now consider the equatiaswish to solve
and substitute them into the above form

n - oR _ -
X=Q f =>Q -R=0 fX:>—a©=—A

15
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@~ Newton Iterative Methogtontinued)

Dy .
e e
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Substituting these into the Newton iteration eaquratiields

~A"sq"=-(Q -R)"

Substituting a three-point, backward time differefar the time derivative,
applying some other small approximations, yields.

2~ " A am Aan LA 2 a
| -Z0tA| AQ"=-|Q"-=Q"+=Q"* [+=At"R"
2R | &= Q-0 0

The right-hand-side of this equation is simply dngcretized form of the
equation A~ A
Q —-R=0

which is the equation we wish to solve. Iterating previous equation until the
right-hand side becomes zero will assure that tjuaton is solved with the
errors reduced. -
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@wm»— ADI/ Approximate Factoring
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The Jacobian matriA is three-dimensional. Wistrmow approximate the
Jacobian for the finite-volume cell. We considdrexahedral cell with
generalized coordinateg, (7, ). We can write the Jacobian as the sum

N

A=A, +A +A,
Substituting this into the left-hand side of thddEumplicit Method results in
{l - ot (Af tA, +A$)J5Q

This can be “factored” to allow a series a 3 oneahsional numerical solutions.
The factoring neglects third-order terms and higiret results in the form

[1-otA,]1-6tA |1 -6tA,|60=R

This approach can be applied to the other imptngthods discussed.

17
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ADI /| AF (continued)

The equations can then be solved in
form:

1 -0tA,

1 -OtA,

| -6tA,

a series eflmnensional solutions of the

JQ, =R
JQ, = 0Q,
Q" = JQ,

The inviscid part of the Jacobian matrices can uymléurtherdiagonalization to

form a scalar penta-diagonal system
which reduces computational effort.
to first-order accuracy in time.

that is nurakyieasier to invert, and
However, teduces the implicit method

18
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MN@»— Solution Convergence Acceleration

Glenn Resear ch Center

There exists several methods for acceleratingahgargence of the solution
to a steady-state solution:

e Use a uniform global CFL number which results anywng local time
steps. Thus larger time steps are used in regiblasger cells.

« Use an incrementing CFL number that starts wismall CFL number to
get past initial transients then increases the Qlihber to converge.

 Limit the allowable change in the soluti@@, over an iteration.

 Locally fix bad solution points by replacing thadosolution point with an
average of local points.

19
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Other Methods Not Discussed

Several other solution algorithms are availabitND that have not been
discussed:

Jacobhi Method

Gauss-Seidel Method

MacCormack’s First-order Modified Approximate Faaation (MAFKk)

ARC3D 3-factor Diagonal Scheme

20
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overnm

2@ Summary on Use of Marching Methods

Glenn Research Center

Time-marching algorithms set by use of following/werds:

IMPLICIT

NAVIER-STOKES ITERATIONS
NEWTON

STAGES

DQ LIMITER

Details of keyword usage available in on-line doeuatation.

Default scheme of Euler Implicit method with Appnmate Factorization
IS robust for steady-state flow simulations.

Space Marching for supersonic streamwise flowsMIB& CHING keyword.

21
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The finite-volume formulation of the conservatiaquations resulted in the
equation

whereF was the flux of the flow across the coirgurface resulting from
the approximation of the surface integral. Fainad-volume cell, the flux
was expressed as

Where

It was assumed that the flux was uniform over #ileface.
22
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Fluxes on a Hexahedral Cell

A hexahedral cell contains 6 quadrilateral fadesst

. nf=6A
F=YF,

f=1

where again,

|:Af - [(\7 - Q)Q_ D]f [ﬂﬁdS)f

Area normal
vector for
facef

]

(Ads),

Facef

(fisan index for the face)

23




W0D"3SaPNOOP MMM//:dRY :: [euL - 18I 4ad 4adMSap Yim pareald 4ad

Numerical Flux on a Cell Face

The numerical flux on a cell face is
|:Af = [(\7 - Q)Q — D]f [Gﬁ dS)f

The normal area vectdfds), Is usually gaddifined for a quadrilateral or
triangular cell face. The focus of the rest o$ttliscussion is on numerical
methods for computing

[(\7 - Q)Q - D]f
at a cell face.

We first will assume tha@ is a known velocity the cell face.

24
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We first consider that we have the states of
the flow on the “left” and “right” of the cell
face,Q, andQg. Our objective is to find the
cell face flux.

N N

F = F (QL’QR) I
One can define
IEL :Iff( L) FAR:FAf( R)

A consistency conditiofor the numerical
flux is that ifQ, = Qg , then

£ =F,

25
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SYwm—- Central Difference Method

Glenn Resear ch Center

A central difference method for computing the flsxsimply

A~ 1~ A

F, = E ( F + FR)
The central-difference method works okay for eldimiomponents of the flux
because there is no preferred direction for th@ggation of information.

A simple central difference is often unstable, esdby in the presence of
strong gradients. One solution is to add somerskooder and fourth-order
dissipation (artificial viscosity) to the flux.

F, :%(ﬁL +F,)+D® +D®

Methods for computin®@ andD® vary, but generally use second and
fourth-order differences with switches to handleatsons inQ.

26
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Sy wm—- Use of Central Difference Method

Glenn Resear ch Center

For the Navier-Stokes equations, the viscous séteags and heat flux terms
In the viscous componeB’ of the non-convective componedbtare elliptic
and those flux components can be computed witle¢h&al difference
method.

Similarly, the fluxes of the turbulence and chemnyistguations can be
computed using the central difference method.

The convective portion of the flux and the presgarm in the inviscid

componenD' of the Navier-Stokes equation have a hyperbolicatiar.
This wave nature can be put to use to computdulkeusingupwind methods.

27
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Upwind Methods

We expressed the non-convective portion of the diuthe Navier-Stokes
equation as
— I \%
DNS - DNS T DNS

This results in the cell-face flux being expresasd

o

Fo = [(\7 — Q)QNS - DINS - D\r<|s]
or

We will now focus on computing the inviscid fltln%' using upwind methods.
The focus will be on the use Bbe’s Upwind Flux-Difference Splitting
Method

28
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The Roe upwind flux-difference method computesitivescid flux as:

F, —(F'+F')——AF
f 2 L R 2 f
whereAF s the flux difference computed as,

AF = AF* +AF~
~ 5
AF* = AT dw,

m=1

A~ 5
AF™ =X AT dw,
=1

Roe’s method is the default flux method in WIND.

29
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& @m- Roe Upwind Flux-Difference Method

Glenn Resear ch Center

TheA,, are the eigenvalues that represent tredspiethe waves. The (+)
Indicate positive eigenvalues and the (-) indicaegative eigenvalues.

The I, are the right eigenvectors that representiirection of propagation
of the waves.

Thedw_ are the Riemann invariants and reptekerstrength of the wave,
O, = 5,0—;—&3
O, =N, OW—N, AU
AV, =n,ou—n, ov
ON, :%+nldj+nzdl+n3cm
OV :%—nldﬁnzéﬁn?,dN

30
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The differentials are computed as

P =Pr~ P
P=p:~ P
A =Ug — U,
N =V, -V,
OV = W5 — W,

Flow properties at the face are computed using &@eaging
P° = Prpy
L= P+ Pl
1/2 1/2

Pt Pr

Similar for computing/, w, andh..

31
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Higher-Order Projection

Glenn Resear ch Center

The choice of values @, andQ have several option:

1) Use the values of the finite-volume cells to ‘tledt” and “right” of the
face. This is a zero-order evaluation and willles aspatially first-order
flux.

2) Use an extrapolation of neighboring finite-vokigells to form a first-
order evaluation of Q at the face. This will résalaspatially second-
order flux.

QL:Qi%(Qi—Qi_l) Qu=Qui- (Q.+2 Q)

32
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/%w%

oY@ Variation Limiting

Glenn Research Center

The simple extrapolation formulas assume a smaartiaton of Q; however,
discontinuities in Q are possible (i.e. shocksgetllsome mechanism to
sense such discontinuities and limit the variadbbQ in these extrapolation
formulas. Modify the extrapolations by introdugia limiter g

Q =Q +%¢(Qi -Q4)

1

QR |+1 2 qﬂ( Q|+2 Qi +1)

This gets into the topic of TVD (Total Variationainishing) flux limiting
methods, which we will not get into here. Theeasisl role of the limiter is
to makeg — 0in the presence of large variations, which makdlthe
spatially first-order.

33
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Sy wm- Examples of Limiters

Glenn Resear ch Center

The possible functions (and theory) for limitersasied. A couple examples
Include:

Superbee:  ¢(r) = max0,min(2r 1), min(r .2)]

Chakravarthy: ¢(r) = ma><{0, min{r : ,3}]

Wherer is some ratio of the flow properties and indicatesamount of
variation in the solution. An example is

&gi +1
Q

Thef3 is a compression paramete B < 2, where a value toward 1 makes
the limiter more dissipative.

r =

34
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Flux Vector Splitting

Glenn Resear ch Center

An alternative to flux-difference splitting is flemector splitting that
considers that the inviscid flux can be linearlgamated

El =4 F-
van Leer’s flux-vector splitting has the generahfcof
_ ; _
u+n,(-v, % 2c)/y
SES e v+n, (-v. +2c)/y

w+n, (-v, £2c)/y

(o -v2)/2+ [l - 1)vnizc]2/[z(y2—1)]_

1:rnass:_l_IOC(I\/Inil)2 Vn:\_i[ﬁ M - Y

35
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Other RHS Methods

Other methods for the “right-hand-side (RHS)” that mot be discussed:

Methods available for'8to 5" —order spatial accuracy.
Roe’s method is modified to allow non-uniform grid
Roe’s method as used in the OVERFLOW code is alvkal
Coakley method is available

HLLE method is available (similar to Roe’s method)

36
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Summary on Use of Flux Methods

Flux algorithms set by use of following keywords:

RHS

BOUNDARY TVD
TVD

HLLE
SMOOTHING

Details of keyword usage available in on-line doeuntation.
Default scheme of second-order Roe’s flux diffeeesplitting is fairly robust.

Use first-order scheme and smoothing during initexiations to help damp
out initial transients.

37
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The inputs for the boundary conditions are spetifieough some of the
following keywords:

ACTUATOR / SCREEN
ARBITRARY INFLOW
BLEED

COMPRESSOR FACE
COUPLING

DOWNSTREAM MACH
DOWNSTREAM PRESSURE
IMPLICIT BOUNDARY
MASS FLOW

OUTFLOW NON-REFLECTING
PERIODIC

VORTEX GENERATOR
WALL FUNCTION

WALL SLIP

WALL TEMPERATURE

Details of keyword usage available in on-line doentation. -
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SN @ Flowfield Initialization

S
L eE
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The time-marching approach requires an initial sofufor the entire flowfield

Uniform flowfield based on conditions listed in tRBEESTREAM
keyword

Works fine for external flows and some time faiemmal flows: however,
need to consider the mass imbalance created vathntinal flowfield.

Mimic real operations of an inlet (start up), esp#y for transonic flow.

ARBITRARY INFLOW keyword can be used to initialize flowfield in a
zone. IJK_RANGE can be used to initialize for a range of grid psint

39
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2oy @m— Damping Initial Transients

Glenn Resear ch Center

Initial flowfield likely contains non-physical contbns, such as non-conserved
mass flow that may cause temporary problems fofldheield

Following keywords provide some capability to gasipthese initial transients:

RHS ROE FIRST
TVD FACTOR 0
SMOOTHING
SEQUENCE

DQ LIMITER

There may be significant variation at the stanterations, but then solution
calms down as iterative convergence is approached.

40
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Subsonic Diffuser Initialization ofs
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A subsonic diffuser case illustrates some pitfaflfowfield initialization

Flow

B i
i

=S
SEaE:

Area ratio, A/ Apfonw = 1-95
Inflow: Mach 0.6, P=10psi, T=520R, Area=7.5In2
Mass flow through the diffuser is set by the infloanditions and area

]

Mass flow = 1.47 Ibm/sec e I

0ED
0.55

0.50

045 |
040
0=E
00
ozs [

00
015

oqo [
oS
= 41
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Subsonic Diffuser Initializatior ofs

Approach 1: Uniform initial flow based on inflow editions

freestream total 0.6 10.0 L520.0 0., 0.

arbitrary inflow
total
hold totals
direction along grid lines
zone 1
uniform 0.6 10,0 520.0 0. 0.
endinflow

mass flow rate actual 1.47 order one zone 1

Initial outflow is 2.87 lbm/sec, but imposing 1.lbm/sec
at the outflow will result in a hammershock formimghe
diffuser that propagates upstream. The shock dtremig
decrease as it nears the entrance and supersomiwiil
be removed. However, the transient existenceeghock
may cause problems for the numerical algorithms.

Mass Flow, lbm/zec

3.0

25

2.0

1B

1.0

Uniform flowfield
results in the mass
flow varying with
diffuser area

UJ

20

a0

40
X, inches

B0

120
120
110
100
020
s
o
QEe0
050
040
o=0
o=20
o0
i m}
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Approach 2: Initialize with a lower Mach numbeatlisets correct outflow

freestream total 0.6 10.0 LE20.0 O, 0.

arbitrary inflow
total
hold totals
direction along grid lines
zone 1
uniform 0.25 10.0 520.0 0. 0.

endinflow "\

mass flow rate actual 1.47 order one =zone 1

Set initial Mach number to 0.25 so that outflow webbe about 1.47 Ibm/sec.

However, accelerations were great enough to reasslipersonic flow.

43
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e

Subsonic Diffuser Initialization: ofs

Approach 3: Initialize with a lower Mach number anatflow

freestream total 0.6 10,0 520.0 0. 0.

arbitrary inflow
total
hold totals
direction along grid lines
zone 1
uniform 0.1 10,0 5Z20.0 0. 0.
endinflow

fmass flow rate actual 1.0 order one zone 1
fmass flow rate actual 1.2 order one zone 1
mass flow rate actual 1.47 order one zone 1

Set the initial Mach number to 0.1 to create aMach number flow.
Start with 1.0 Ibm/sec outflow for 500 cycles.
Step up to 1.2 Ibm/sec outflow for another 500 eycl

End up with desired 1.47 Iom/sec outflow.

Mimics startup

procedures for
real inlets

05S
050
055
050
045
040
0ss
00

ozs5 |

00
015

a0 |

0ns
(ulinu}
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Subsonic Diffuser Initializatiors ofs

All three approaches yield same solution and have

similar convergence behavior, although convergence
of Approach 3 lags other approaches. Static pressu

and Mach numbers down the diffuser match.
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Supersonic Inlet Startup o>

Mixed-compression supersonic inlet (NASA VDC inlet)
Mach 2.5 freestream

Mach 0.4 outflow at AIP (Aerodynamic Interface Plane

Nozzle zone for outflow

Cowl
/ ff{f‘_ﬂ/
f.f"’#/ :
.--"""H-FFH
- X Nozzle
AIP

Centerbody

30-degree axisymmetric flow domain
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g

Glenn Resear ch Center

e Supersonic Inlet Startupzor2

Initialize with uniform flowfield |:=
based on freestream conditions ::

Forward shock structure sets uf: =
rather quickly o

Nozzle creates a normal shock
that propagates forward in the
diffuser until a balance is obtained.
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=»- \When Things Go Wrong

Glenn Resear ch Center

At times a CFD simulation will fail. Some tips on recovering:
e Check CFL number, using a lower CFL number oreanmnt CFL

 Add more damping witlRHS, SMOOTHING, TVD keywords

o Try to “fix” the solution with theFIXER keyword

* Reinitializing the flowfield withARBITRARY INFLOW and the
REINITIALIZE keywords

* Investigate grid problems (excessive skewing @tshing)
o Start with a coarser grid and then refine grid

e |s problem formulated incorrectly?
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